Raspberry Pi 3 Model B with Coral Edge TPU acceleration running SSD object detection

It wasn’t too hard to go from the inline rt-ai Edge Stream Processing Element using the Coral Edge TPU accelerator to an embedded version running on a Raspberry Pi 3 Model B with Pi camera.  The rt-ai Edge test design for this SPE is pretty simple again:

As can be seen, the Pi + Coral runs at about 4 fps with 1280 x 720 frames which is not too bad at all. In this example, I am running the PiCoral camera SPE on the Raspberry Pi node (Pi7) and the View SPE on the Default node (an i7 Ubuntu machine). Also, I’m using the combined video and metadata output which contains both the detection data and the associated JPEG video frame. However, the PiCoral SPE also has a metadata-only output. This contains all the frame information and detection data (scores, boxes etc) but not the JPEG frame itself. This can be useful for a couple of reasons. First, especially if the Raspberry Pi is connected via WiFi, transmitting the JPEGs can be a bit onerous and, if they are not needed, very wasteful. Secondly, it satisfies a potential privacy issue in that the raw video data never leaves the Raspberry Pi. Provided the metadata contains enough information for useful downstream processing, this can be a very efficient way to configure a system.

An Edge TPU stream processing element for rt-ai using the Coral USB Accelerator

A Coral USB Accelerator turned up yesterday so of course it had to be integrated with rt-ai to see what it could do. Creating a Python-based SPE from the object detection demo in the API download didn’t take too long. I used the MobileNet SSD v2 COCO model as a starting point to generate this example output:

The very basic rt-ai test design looks like this:

Using 1280 x 720 video frames from the webcam, I was getting around 2 frames per second from the CoralSSD SPE. This isn’t as good as the Intel NCS 2 SPE but that is a compiled C++ SPE whereas the Coral SPE is a Python 3 SPE. I haven’t found a C++ API spec for the Edge TPU as yet. Perhaps by investigating the SWIG-generated Python interface I could link the compiled libraries directly but that’s for another day…

rt-ai stream processing elements in Docker containers

Docker containers are a great way of reducing the headaches caused by pre-requisites and software versions when deploying code in general and rt-ai SPEs in particular. So it made sense to add support for SPEs in Docker containers in addition to the existing bare metal SPEs. The screen capture above shows the test design in rtaiDesigner using the Docker containerized version of the existing TensorFlow object detector. It is essentially identical to the bare metal version, just with the object detection SPE replaced with the Dockerized version. The container was based on the TensorFlow GPU image.

SPE code is deployed to nodes as a package that includes start and stop scripts. Normally, the start script is something very simple: a single line kicking off a Python script for example. Docker SPEs use a slightly more complex start script that first tries to pull the required Docker image from a defined registry location and then invokes the container in the required manner (using nvidia-docker if necessary).

No changes were required to the SPE code itself in this case – just customization of the start and stop scripts and I added some files used to build the container and install it in the local registry so that the build and update process is very straightforward. Plus, as this test design shows, bare metal and containerized SPEs can be mixed without limitation as the stream interfaces are identical in all cases.

Sending and receiving binary data using JSON encoding, Python and MQTT

I really like using JSON encoding as a way of transferring messages between processes as it is machine and language independent. Plus, it is very well suited to stream processing networks (such as rt-ai Edge) as arbitrary fields can be added to existing JSON messages and passed along. Contrast this with compiled IDLs which typically have no flexibility whatsoever.

One problem though is that binary data cannot be included in JSON messages directly. Typically base64 encoding is used to convert binary data into text. However, this is inefficient, especially in a stream processing network where base64 decoding and encoding might have to be done several times.

There are a variety of modifications to JSON around but it is very simple to just add binary data on to the end of a JSON message to form a complete message that can be transferred via MQTT for example.

In Python, an MQTT message can be published like this:

    import json
    import struct
    def publish(topic, jsonData, binData = None):
        jsonDump = json.dumps(jsonData)
        jsonString = struct.pack('>I', len(jsonDump)) + jsonDump + binData
        MQTTClient.publish(topic, jsonString)

Here, jsonData contains the normal JSON message text, binData contains the binary data to be sent along with it. To receive the message, use something like this:

    import json
    import struct
    def onMessage(client, userdata, message):
        jsonLength = struct.unpack('>I', message.payload[0:4])[0]
        jsonData = json.loads(message.payload[4:4+jsonLength])
        binData = message.payload[4+jsonLength:]