The new ZED camera SPE and CYOLO SPE with support for depth cameras


The new SPE for the Stereolabs ZED depth camera is now working nicely, as is the new support for depth data in the CYOLO SPE. The extra depth information can be seen in the metadata display on the right of the screen capture – the annotation on the image itself is still the standard code but, since that is just for testing, it is ok.


This is the design used for testing. The ZED camera SPE has two outputs: one looks like a standard camera output while the other has both left and right images and the depth image. The CYOLO SPE can now accept either standard video messages or depth video messages using the appropriate input pin. The depth image adds about 3.7MB to each message so it isn’t a trivial overhead but the CYOLO module only ever outputs a standard video frame so the large payload is contained in the single link in this design. Even running everything on a busy machine with 1280 x 720 frames, the whole design still runs at around 15fps which is not too bad.

 

The ZeroSensor – a sentient space point of presence

One application for rt-ai is ubiquitous sensing leading to sentient spaces – spaces that can interact with people moving through and provide useful functionality, whether learned or programmed. A step on the road to that is the ZeroSensor, four prototypes of which are shown in the photo. Each ZeroSensor consists of a Raspberry Pi Zero W, a Pi camera module v2, an Adafruit BME 680 breakout and an Adafruit TSL2561 breakout. The combination gives a video stream and a sensor stream with light, temperature, pressure, humidity and air quality values. The video stream can be used to derive motion sensing and identification while the other sensors provide a general idea of conditions in the space. Notably missing is audio. Microphone support would be useful for general sensing and I might add that in real devices. A 3D printable case design is underway in order to allow wide-scale deployment.

Voice-based interaction is a powerful way for users to interact with sentient spaces. However, it is assumed that people who want to interact are using an AR headset of some sort which itself provides the audio I/O capabilities. Gesture input would be possible via the ZeroSensor’s camera. For privacy reasons video would not be viewed directly or stored but just used as a source of activity data and interaction.

This is the simple rt-ai design used to test the ZeroSensors. The ZeroSynth modules are rt-ai Edge synth modules that contain SPEs that interface with the ZeroSensor’s hardware and generate a video stream and a sensor data stream. An instance of a video viewer and sensor viewer are connected to each ZeroSynth module.

This is the result of running the ZeroSensor test design, showing a video and sensor window for each ZeroSensor. The cameras are staring at the ceiling because the four sensors were on a table. When the correct case is available, they will be deployed in the corners of rooms in the space.