Raspberry Pi 3 Model B with Coral Edge TPU acceleration running SSD object detection


It wasn’t too hard to go from the inline rt-ai Edge Stream Processing Element using the Coral Edge TPU accelerator to an embedded version running on a Raspberry Pi 3 Model B with Pi camera.  The rt-ai Edge test design for this SPE is pretty simple again:


As can be seen, the Pi + Coral runs at about 4 fps with 1280 x 720 frames which is not too bad at all. In this example, I am running the PiCoral camera SPE on the Raspberry Pi node (Pi7) and the View SPE on the Default node (an i7 Ubuntu machine). Also, I’m using the combined video and metadata output which contains both the detection data and the associated JPEG video frame. However, the PiCoral SPE also has a metadata-only output. This contains all the frame information and detection data (scores, boxes etc) but not the JPEG frame itself. This can be useful for a couple of reasons. First, especially if the Raspberry Pi is connected via WiFi, transmitting the JPEGs can be a bit onerous and, if they are not needed, very wasteful. Secondly, it satisfies a potential privacy issue in that the raw video data never leaves the Raspberry Pi. Provided the metadata contains enough information for useful downstream processing, this can be a very efficient way to configure a system.

SSD object detection using the Neural Compute Stick 2 now has its own rt-ai stream processing element


Turned out to be pretty easy to integrate the ssd_mobilenet_v2_coco model compiled for the Intel NCS 2 into rt-ai. Since it doesn’t use the GPU, I was able to run this and the YOLOv3 SPE on the same machine which is kind of amusing – one YOLOv3 instance tends to chew up most of the GPU memory, unfortunately, so the GPU can’t be shared. I would have liked to have run YOLOv3 on the NCS 2 for direct comparison but could not. The screen capture above shows the MediaView SPE output for both detectors running on the same 1280 x 720 video stream.


This is the design and it is showing the throughput of each detection SPE – 14 fps for the GTX 1080 ti YOLO and 9 fps for the NCS 2 based SSD. Not exactly a fair comparison, however, but still interesting. It would be much better if I had the same model running using a GPU of course. Right now, the GPU-based SPE that can run ssd_mobilenet_v2_coco (and similar models) is Python based and that (not surprisingly) runs a fair bit slower than the compiled C++ versions I am using here.

ssd_mobilenet_v2_coco running on the Intel Neural Compute Stick 2


I had more luck running the ssd_mobilenet_v2_coco model from the TensorFlow model detection zoo on the NCS 2 than I did with YOLOv3. To convert from the .pb file to the OpenVINO-friendly files I used:

python3 mo_tf.py --input_model ssdmv2.pb --tensorflow_use_custom_operations_config ./extensions/front/tf/ssd_v2_support.json --tensorflow_object_detection_api_pipeline_config ssdmv2_pipeline.config --data_type FP16

In this case, I had renamed the frozen_instance_graph.pb from the download as ssdmv2.pb and renamed the pipeline.config file from the download as ssdmv2_pipeline.config. The screen capture above shows the object_detection_demo_ssd_async demo app running with the NCS 2. I didn’t sort out the labels for this test which is why it is just displaying numbers for the detected objects.

I also tried this using the CPU (using –data_type FP32) with this result:

It is worth noting that the video was running at 1920 x 1080 which is a significant challenge for just about anything. The CPU (an i7 5820K) is obviously a fair bit faster than the NCS 2 but a real advantage is the small physical footprint, low price, low power and CPU offload that the Myriad X VPU in the NCS 2 offers.

Running YOLOv3 with OpenVINO on CPU and (not) NCS 2


Since OpenVINO is the software framework for the Neural Compute Stick 2, I thought it would be interesting to get the OpenVINO YOLOv3 example up and running. While the toolkit download does include a number of models, YOLOv3 isn’t one of them. Instead, the model has to be created from a TensorFlow version.

The instructions here describe how to do this. Steps 1 and 2 are fine but it is kind of awkward how the .pb file is generated so I created a new simple script to do this:

# -*- coding: utf-8 -*-

import numpy as np
import tensorflow as tf
from tensorflow.python.framework import graph_io

from yolo_v3 import yolo_v3, load_weights, detections_boxes, non_max_suppression

def load_coco_names(file_name):
    names = {}
    with open(file_name) as f:
        for id, name in enumerate(f):
            names[id] = name
    return names
    
def main(argv):

    classes = load_coco_names("coco.names")

    # placeholder for detector inputs
    inputs = tf.placeholder(tf.float32, [None, 416, 416, 3])

    with tf.variable_scope('detector'):
        detections = yolo_v3(inputs, len(classes), data_format='NHWC')
        load_ops = load_weights(tf.global_variables(scope='detector'), "yolov3.weights")

    boxes = detections_boxes(detections)

    with tf.Session() as sess:
        sess.run(load_ops)
        frozen = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['concat_1'])
        graph_io.write_graph(frozen, './', 'yolo_v3.pb', as_text=False)

if __name__ == '__main__':
    tf.app.run()

This has the important filenames hardcoded – you just need to put yolo_v3.weights and coco.names in the tensorflow-yolo-v3 directory. Run the script above with:

python3 script.py

and the yolo_v3.pb file should be created. Copy this into the model_optimizer directory, set that as the current directory and run:

python3 mo_tf.py --input_model yolo_v3.pb --tensorflow_use_custom_operations_config ./extensions/front/tf/yolo_v3.json --input_shape [1,416,416,3]

The –input_shape parameter is needed as otherwise it blows up due to getting -1 for the mini-batch size. I just forced this to 1 and it was happy.

The result is in yolo_v3.xml and yolo_v3.bin. These can be used with the demo object_detection_demo_yolov3_async and an example output is shown in the screen capture above. Note that it is necessary to run the following:

~/intel/computer_vision_sdk/bin/setupvars.sh

in the same terminal session as the demo will be run in order for CPU mode to work.

By default, the output just annotates the boxes with label numbers rather than readable labels. To get readable labels, copy coco.names to yolo_v3.labels and put it in the same directory as the xml file. One problem is that the label file reader doesn’t handle spaces in the labels. Rather than mess with the code, I just changed the spaces in the yolo_v3.labels file to underlines. Otherwise it thinks a mouse is a donut and a monitor a dog which is a little confusing.

However, what I really wanted to do was to run this on the NCS 2. The model as generated is FP32 and the NCS 2 wants FP16. Adding –data_type FP16 to the mo_tf.py command line fixes that but unfortunately it reports that the NCS 2 doesn’t support the Resample layer which is used by YOLOv3. If I had been smart I would have noticed that the usage info only mentions CPU and GPU :-(. Interestingly, the table of supported layers indicates that both Resample and Interp are supported on MYRIAD so I do not know what is going on here.

I did try changing the offending tf.image_resize_nearest_neighbor call into a tf.image.resize.bilinear call (by editing yolo_v3.py in the tensorflow-yolo-v3 directory). This maps to Interp instead of Resample in the OpenVINO IR.  This worked fine in CPU mode but still failed to run on the NCS 2 except in a different way:


Not sure if that is a bug or intended. Anyway, that seems to be the end of the road with running YOLOv3 on the NCS 2 for the moment at least. However, there are a lot of things that do run on the NCS 2 very nicely. Still, YOLOv3 had started to become my standard way of checking inference things out, just like my strategy of evaluating restaurants by the quality of their Caesar salad – at least in the days when you could still get them!

*** Update: YOLOv3 does now work on the NCS 2 using the latest OpenVINO release.

Dockerized YOLOv3 rt-ai SPE = YAOD (yet another object detector)

I had intended to be doing something completely different today (working on auto-compiling highlight reels of interesting events generated from the prototype production rt-ai object detection system) but managed to get sidetracked by reading about Darknet-based YOLOv3.  As Darknet itself is in C and compiles to a shared library this was a good candidate for a Dockerized stream processing element. I used a cuDNN image from NVIDIA as the base since it provides pretty much everything required – I just had to add in the rt-ai SPE library software and compile Darknet on top of that.

The results are pretty good. The preview above shows some detected objects. I discovered that it could detect toothbrushes which is why I am waving one around. It also did a good job of picking up the second mouse just by my left shoulder. 2fps with 1280 x 720 frame size is a little disappointing but this seems to be due to the Python parts of the code since the C demo provided with the library runs much faster. It is a little faster with preview turned off, however (which would be the production mode anyway).

Speaking of production, it does have a problem as it consumes just over 7GB of memory on my GTX 1080 ti GPU card. This means that one GPU card can’t run two instances simultaneously, unlike with the TensorFlow SSD detector. In fact, I can get two instances of that working on a GTX 1080 card with 8GB total memory.


Just for completeness, this is the design which looks just like the usual test designs. The Docker container is built and pushed to a private Docker registry automatically when the design is generated. The target node then just pulls the image from the registry when the design starts up.


This is the MediaView output showing the metadata. The metadata format is equivalent to that generated by the TensorFlow object detector so that they are completely interchangeable.

rt-ai stream processing elements in Docker containers

Docker containers are a great way of reducing the headaches caused by pre-requisites and software versions when deploying code in general and rt-ai SPEs in particular. So it made sense to add support for SPEs in Docker containers in addition to the existing bare metal SPEs. The screen capture above shows the test design in rtaiDesigner using the Docker containerized version of the existing TensorFlow object detector. It is essentially identical to the bare metal version, just with the object detection SPE replaced with the Dockerized version. The container was based on the TensorFlow GPU image.

SPE code is deployed to nodes as a package that includes start and stop scripts. Normally, the start script is something very simple: a single line kicking off a Python script for example. Docker SPEs use a slightly more complex start script that first tries to pull the required Docker image from a defined registry location and then invokes the container in the required manner (using nvidia-docker if necessary).

No changes were required to the SPE code itself in this case – just customization of the start and stop scripts and I added some files used to build the container and install it in the local registry so that the build and update process is very straightforward. Plus, as this test design shows, bare metal and containerized SPEs can be mixed without limitation as the stream interfaces are identical in all cases.

Integrating TensorFlow object detection into rt-ai

I have been using DeepLabv3 for a while now for object detection but I thought it would be interesting to try some examples from the TensorFlow object detection repo. I now have an rt-ai Edge stream processing element that is based on the Jupyter notebook example in the repo. Presumably this will work with any of the models in the model zoo although I am just using the default one for now.

As you can see from the preview capture above (apart from the nasty looking grass on the left) it picks out the car happily, although not with a great confidence level. Maybe it doesn’t like the elevated camera position or the car is a bit too far away or a difficult pose – I will need to do some more experiments. With the preview display on (using PyGame) I am only getting 1 fps with 1280 x 720 frames from the camera which is a little disappointing. However, with preview turned off (the normal production mode anyway), I am getting over 15fps which is entirely adequate.

The capture above shows the raw image along with the object recognition data in the form of metadata rather than drawn on the image. This is actually pretty useful for both real-time and offline processing (such as a machine learning run). Capturing the original image does have the advantage that alternate object detectors could be run at any time, at the expense of having to store more data. Real-time actions can be based on the metadata and the raw image just discarded.

Anyway, definitely a work in progress. It will be interesting to see how it compares with the DeepLabv3 version as the implementation gets more efficient. What’s nice is that it is trivial to swap out one object detector for another or run them in parallel in order to run tests. Just takes a few seconds with the rtaiDesigner GUI.

Scaling embedded edge inference with rt-ai Edge synth modules

Now that edge devices with embedded inference support are starting to appear, there’s a need for scalable deployment of software and configuration data to these devices. rt-ai can address this scaling requirement using synth modules. Synth modules are composite elements in a stream processing network (SPN) that combine simpler stream processing elements (SPEs) into more complex structures. The idea is that a synth module can be created that contains the SPEs required for a specific type of embedded edge inference device. This synth module can then be deployed, configured and managed for all instances of this type of edge inference device very easily using the rtaiDesigner tool.

The screen capture above is an example of the output from an SPN that includes two differently configured DeepLab v3+ instances along with associated video and audio capture SPEs. The top level SPN looks like this:

There are two synth modules in the design, both instances of the same underlying synth module:

This simple synth module consists of a video capture SPE, an audio capture SPE and the DeepLab v3+ SPE.

As with standard SPEs, synth modules can be allocated to any node in the rt-ai Edge network. The only limitation at present is that all SPEs in an instance of a synth module must run on the same node. This will be relaxed at later date when automatic SPE placement based on available resources is implemented. A synth module can be instanced multiple times on the same node or different nodes as required. In this example, two instances of the same synth module were placed on the Default node.

Individual instances of a synth module can be configured in the top level design:

In this case, Synth0 is being configured. Note the tabs in the dialog. There is one tab for each SPE in the underlying synth module. SPE dialogs are auto-generated from a JSON spec in the SPE design directory. This makes it very easy to construct a combined dialog when SPEs are used in a synth module. Any design can be turned into a synth module just by pressing the Generate synth module button. The synth module then becomes available in the Add module dialog just like any other SPE.

As designs are completely regenerated every time the Generate design button is pressed, internal changes can be made to the synth module at any time and they will be reflected in top level designs the next time that they are generated.

Right now, synth module designs cannot include synth modules, only standard SPEs. If multi-level synth modules were required, it would be a small extension of the current implementation. For now, the ability to reproduce and configure a standard SPN subnetwork multiple times is sufficient to scale most edge inference applications.

Real time edge inference monitoring with rt-ai

rt-ai is progressing nicely and now supports multi-node operation (i.e. multiple networked servers participating in a processing network) along with real-time monitoring. The screen capture shows a simple processing network where the video feed from a camera is passed through a DeepLab-v3+ stream processing element (SPE) and then on to two separate media viewers. At the top of each SPE block in the Designer window is some text like Cam(Default). Here, Cam is the name given to the SPE while Default is the name of the node (server) on which the SPE is running. In this design there are two nodes, Default and rtai0.

The code underlying the common SPE API communicates with the Designer window and supplies the stats about bytes and messages in and out. Soon, this path will also allow SPE-specific real-time parameter tweaking from the Designer window.

To add a node to the system, it just needs to have all of the prerequisites installed and run a special NodeManager SPE. This also communicates with the Designer and supports SPE deployment and runtime control, activated when the user presses the Deploy design button. Moving an SPE between nodes is just a case of reassigning it, generating the design and then deploying the design again.

The green outlines around each SPE indicate the state of the SPE and the node on which it is running. When it is all green, as in the first screen capture, this indicates that both SPE and node are running. For the second screen capture, I manually terminated the View2 SPE on rtai0. The inner part of the outline has now gone red. This indicates that the node is up but the SPE is down. If the outline is all red, it means that the node is down and not communicating with the Designer.

It’s interesting to note that DeepLab-v3+ is processing around 5 frames per second using a GTX-1080 GPU. The input rate from the camera is 30 frames per second. The processor drops frames while it is still processing an earlier frame, ensuring that queues do not build up and latency is kept to a minimum.

DeepLabv3+ Stream Processing Element (SPE) for rt-ai

Integrating DeepLabv3+ with rt-ai Edge turned out to be pretty straightforward and follows from an existing TensorFlow-based Inception Stream Processing Element (SPE). The screen capture above shows an example of what it can do when given a video stream, where the DeepLab SPE has removed all pixels that aren’t part of recognized objects. This is why I am waving a bottle of beer about (and not because it is after 5pm). The PASCAL VOC dataset on which the model I am using has been trained can recognize a finite set of categories of objects. Waving a cow about didn’t seem practical hence the bottle. This is the original frame from the camera:

The DeepLab SPE also allows a specific category to be selected. In the case of the capture below, this was just the bottle:

On the right hand side of the media viewer screen you can see the metadata that has been generated by the DeepLab SPE. This is an example of how rt-ai Edge SPEs can be used to enhance the semantic content of data – video frames in this case.

It is pretty easy to configure the DeepLab SPE using rtaiDesigner:

This is the design screen showing the fairly trivial flow used for this test. Cam is a webcam capture SPE, Audio is an audio capture SPE. The DeepLab SPE is connected in the flow between the capture SPE and the media view SPE.

An interesting feature of rt-ai is how SPEs can be configured. An SPE consists of some code (Python scripts in these cases) and a module spec (mspec) file. The mspec file contains information about subscriber and publisher ports as well as a section that is used to generate a configuration dialog. An example for the DeepLab SPE module dialog is shown above. This is the mspec file that generated it:

{
    "ModuleType" : "DeepLab",

    "ModuleDialog" : {
        "DialogName" : "DeepLab",
        "DialogDesc" : "Settings dialog for DeepLab semantic segmentation",

        "DialogData" : [
            {
                "VarName" : "OutputFormat",
                "VarDesc" : "Output frame format",
                "VarType" : "ConfigSelection",
                "VarValue" : "0",
                "VarStringArray" : [{ "VarEntry" : "Color map"},{"VarEntry" : "Masked image" },{"VarEntry" : "Single category masked image" }]
            },
            {
                "VarName" : "Category",
                "VarDesc" : "Single category selector",
                "VarType" : "ConfigSelection",
                "VarValue" : "15",
                "VarStringArray" : [
                    {"VarEntry" : "background"},
                    {"VarEntry" : "aeroplane"},
                    {"VarEntry" : "bicycle" },
                    {"VarEntry" : "bird" },
                    {"VarEntry" : "boat" },
                    {"VarEntry" : "bottle" },
                    {"VarEntry" : "bus" },
                    {"VarEntry" : "car" },
                    {"VarEntry" : "cat" },
                    {"VarEntry" : "chair" },
                    {"VarEntry" : "cow" },
                    {"VarEntry" : "diningtable" },
                    {"VarEntry" : "dog" },
                    {"VarEntry" : "horse" },
                    {"VarEntry" : "motorbike" },
                    {"VarEntry" : "person" },
                    {"VarEntry" : "pottedplant" },
                    {"VarEntry" : "sheep" },
                    {"VarEntry" : "sofa" },
                    {"VarEntry" : "train" },
                    {"VarEntry" : "tv" }
                ]
            },
            {
                "VarName" : "Preview",
                "VarDesc" : "Enable preview",
                "VarType" : "ConfigBool",
                "VarValue" : "false"
            }
        ]
    },
    
    "ModulePubSubs" : {
        "Pubs" : {
            "VideoOut" : "VideoMJPEG"
        },

        "Subs" : {
            "VideoIn" : "VideoMJPEG"
        }
    }
}

This makes it very easy to try out different settings. Use the module’s dialog to change something, regenerate the design using the Generate design button and then restart the network. Right now, for testing, rtaiDesigner generates start.sh and stop.sh scripts that can be used to quickly implement changes. Hopefully, in the future, configuration changes will be possible on the fly without having to restart the stream processing network.